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Bird feather fungi from Svalbard Arctic
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Abstract Despite feather fungi being an important com-

ponent of the Arctic fungal flora, their ecological role and

diversity are not fully known. In the current study, fungal

cultures were isolated from feathers (barnacle goose, com-

mon eider, and glaucous gull) collected in the Ny-Ålesund

region, Svalbard. Isolates were identified by ITS region

sequences, which include the ITS1, ITS2, and 5.8S rRNA.

The result showed culturable yeast and filamentous fungi

belonging to three classes: Ascomycota (Pyrenochaetopsis

pratorum, Cladosporium herbarum, Thelebolus micro-

sporus, Aspergillus versicolor, Penicillium commune, and

Venturia sp.), Basidiomycota (Mrakia blollopis and Rho-

dotorula mucilaginosa), and Zygomycota (Mucor flavus).

Most of the fungal isolates appeared to be cold-tolerant, and

about 60 % of the isolates showed keratinase activity. The

reasonably low fungal diversity colonizing feathers indicates

that the birds of Svalbard are casual carriers of fungi which

may result in a negligible impact on their health. To the best

of our knowledge, this is the first record of fungal commu-

nities present on the feathers of birds in the high Arctic.

Keywords Arctic � Bird � Feathers � Culturable fungi �
Keratinophilic fungi

Introduction

Fungi have enormous ecological importance due to wide

morphological diversity, life strategies, and also the ability to

interact with various biotic and abiotic components of the

environment (Hawksworth 1991 ; Peay et al. 2008). Polar fungi

have the ability to grow in oligotrophic cold environments

(Connell et al. 2008) and to produce cold-active enzymes

(Buzzini et al. 2012), but their ecological role is poorly

understood (Buzzini et al. 2012; Dynowska et al. 2013).

Mycological exploration in Svalbard began with the

study of Karsten (1872). Elvebakk et al. (1996) taxonom-

ically listed 389 species of fungi belonging to Myxomy-

cota, Oomycota, Chytridiomycota, Zygomycota,

Ascomycota, Deuteromycota, and Basidiomycota. From

moss colonies of Svalbard, Hoshino et al. (1999) isolated

Pythium ultimum Throw var. ultimum. From Norway and

Svalbard, Aarnæs (2002) prepared a catalogue on ‘‘macro-

and micromycetes’’. Kurek et al. (2007) characterized soil

filamentous fungi from Bellsund region of Spitsbergen.

Pang et al. (2008, 2009) had delineated two novel fungal

species from marine habitat of Svalbard. Singh et al. (2012)

reported 19 species under 14 genera (Acremonium,

Arthrinium, Aspergillus, Cladosporium, Corynespora,

Emericella, Geomyces, Mortierella, Mucor, Myrothecium,

Penicillium, Phialophora, Preussia, and Xylaria) from

soils of Ny-Ålesund. Recently, pathogenic yeasts have also

been reported from the throat and cloaca of the little auk

(Alle alle), an Arctic colonial seabird (Dynowska et al.

2013). However, the composition of fungal flora in Arctic

bird’s feathers has not been investigated.
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In cold environments, fungi have been isolated from

various substrates and habitats such as permafrost (Ivarson

1965; Ozerskaya et al. 2009); glacial ice (Reeve et al. 2002;

Butinar et al. 2007); cryoconite holes (Säwström et al. 2002);

soil (Callaghan et al. 2004); puddles (Pathan et al. 2009); and

Arctic coastal environments (Butinar et al. 2011). Fungi

colonize either as normal harmless biota on animals and

humans (Barnett et al. 2000) or as pathogens (Ghannuaum

and Abu-Elteen 1990; Dynowska and Kisicka 2005a).

However, a few fungal species (Aspergillus fumigates, A.

flavus, Candida albicans, C. tropicalis, C. glabrata, etc.) are

harmless to some animal species but may be pathogenic to

others (Dynowska and Kisicka 2005a, b; Tsiodras et al.

2008). Arctic birds have been considered an excellent host

and/or vector of fungi (Dynowska et al. 2013) and bacteria

(Sjolund et al. 2008). In addition to the Arctic, birds from

various other areas have also been reported as fungal carriers

(Dupont et al. 1994; Tsiodras et al. 2008). Knowledge of

fungi growing on birds from the Arctic (Wojczulanis-Jaku-

bas et al. 2011; Dynowska et al. 2013) and Antarctic (Del

Frate and Caretta 1990; Singh et al. 2014) region is very

limited. The presence of fungi on the feathers of common,

clinically healthy birds from tropical, subtropical, and other

than polar regions (Buck 1983; Buck and Chabasse 1998;

Mancianti et al. 2002; Czeczuga et al. 2004; Dynowska and

Kisicka 2005a, b; Cafarchia et al. 2006; Kutty and Philip

2008; Mandeel et al. 2011; Miljković et al. 2011; Gungnani

et al. 2012) has also been documented. The migration and its

epidemiological significance of pathogenic fungi among

different habitats with respect to wild birds have been

reported (Tsiodras et al. 2008).

Due to the impact of climate change, the Arctic has

experienced a twofold higher increase in temperature

compared to most parts of world (IPCC 2007). As a result,

there is the possibility of an emergence of different fungi

and an increase in the prevalence of potentially pathogenic

fungi colonizing birds (Dynowska and Kisicka 2005a).

Moreover, due to increasing temperatures, the dormant

mesophilic fungal spores (including bird’s pathogens)

which are carried by birds, air, and anthropogenic activities

may emerge and colonize areas of Arctic. Therefore, there

is a need to examine more birds from the Arctic regions.

Some birds such as barnacle goose (Branta leucopsis),

common eider (Somateria mollissima), and glaucous gull

(Larus hyperboreus) were sampled in Svalbard during the

Arctic summer. The barnacle goose builds their nests on small

islands and mountain cliffs, while the common eider builds its

nest close to the coasts. Both the barnacle goose and the

common eider choose to feed in the wetland area. The glau-

cous gull builds nests on the ground or on cliffs and feeds in

Kongsfjorden coasts and on the wetlands. These birds breed in

Svalbard during the Arctic summer and are considered to be an

important component of the Svalbard terrestrial ecosystem.

Fungi have various nutritional modes and ecological

behaviours (saprotrophy, necrotrophy, and biotrophy);

however, numerous fungi do not restrict themselves to a

single mode but exhibit varying degrees of flexibility in

response to changes in their environment through mecha-

nism of heterokaryosis and differential gene expression

(Cooke and Whipps 1993). Keratinophilic fungi are con-

sidered to be natural colonizer of partially degraded keratin

substrate which are used as a source of carbon, nitrogen,

and sulphur (Griffin 1960; De Vries 1962). However,

keratinolytic fungi are only those that are truly capable of

attacking and demolishing keratin (Majchrowicz and

Dominik 1969; Dominik et al. 1973; Filipello Marchisio

2000). The specialized fungal organs (hyphae) and

enzymes (keratinases) together are accountable for kerati-

nolytic activity (Kunert 1972; Böckle et al. 1995; Filipello

Marchisio 2000). It has been reported that, like many other

fungal biochemical activities, keratinolysis does not have a

species-specific character (Filipello Marchisio 1986; Fili-

pello Marchisio et al. 1991, 1994). An individual species

within the same environmental conditions has both active

and non-active strains, and each strain/isolate showed

variations in the manner and intensity in which they attack

the keratin substrate and differentiate specialized struc-

tures, therefore termed as a ‘‘potentially keratinolytic spe-

cies’’ (Filipello Marchisio 2000).

The current study was planned to evaluate the species

composition and prevalence of filamentous fungi and

yeasts on feathers of birds in Svalbard. Furthermore, we

have investigated keratinophilic/keratinolytic activity of

feather fungi. Moreover, we have also examined the bio-

safety level of the fungal species.

Materials and methods

Study site and sampling methods

Spitsbergen is the largest island of the Svalbard archipe-

lago. The mean air temperature is -14 �C in the coldest

month (February) and ?5 �C in the warmest month (July)

(Nygaard 2009). In the present study, bird’s feathers were

sampled from their breeding places near the Kongsfjorden

coast as well as the coast of an island inside the fjord and

mountain cliffs around Ny-Ålesund (78�550N, 11�560E) in

Svalbard (Fig. 1). Without harming birds, three feather

samples were collected from five adult individuals of each

bird species (barnacle goose, common eider, and glaucous

gull) using sterile gloves, forceps, and a sample collector

(HiMedia Laboratories) from 6 to 7 July 2012. The samples

were stored at -20 �C for one day and transported, with

ice packs, within 24 h to the laboratory. The bird’s feathers

vane was analysed for culture-based studies.
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Isolation of fungi and their characteristics

The collected feathers were inoculated onto a Sabouraud

dextrose agar (SDA) artificial mycological medium. This

medium was composed of a mixture of peptic digest of

animal tissue and pancreatic digest of casein (1:1) 10 g/l,

dextrose 40 g/l, and agar 15 g/l with pH, after sterilization,

of 5.6 ± 0.2. To get psychrophilic fungal isolates for

screening of keratinase activity and to avoid the growth of

mesophilic fungi, the plates were incubated in 4 and 15 �C
for 3 weeks. Cultures plates were monitored regularly on

the basis of shape, colour, and different morphological

features (hyphae, conidiophore, and conidial structure).

The distinct colony was picked up, subcultured, and

observed for purity of cultures under a microscope. Pure

cultures were further incubated at 22, 25, and 30 �C to see

whether it had the ability to grow at higher temperatures.

The purified fungal colonies were transferred onto the

SDA slants medium solidified in a test tube at about a 35�
slant to provide more surface area for fungal growth for

detailed study. For morphotaxonomical studies, the fungal

mounts were prepared on slides using lactophenol-cotton

blue as a mounting medium and observed under Olympus

BX-51 and IX-71 model microscopes. Fungal cultures

were initially identified on the basis of morphotaxonomy

with the help of standard literature (Rapper and Fennell

1965; Ellis 1971, 1976; Barron 1977; Pitt 1979; Schneider

1979; Carmichael et al. 1980; Domsch et al. 1980; Samson

and Frisvad 2004; De Hoog et al. 2005; Kirk et al. 2008; de

Gruyter et al. 2010; Kurtzman et al. 2011). The isolates

with similar morphological characteristics were grouped

together, and the representative isolates were subjected to

DNA sequence analysis of ITS region. All identified pure

cultures were maintained on SDA slants and deposited at

the National Fungal Culture Collection of India (NFCCI-

WDCM 932) in Pune, India.

Molecular characterization: polymerase chain

reaction (PCR), Sequencing, and phylogenetic

analysis

Total DNA was extracted from cultures (grown on SDA for

3 weeks at 4 �C) using the ISOPLANT II kit (Wako Pure

Chemical Industries Ltd., Japan). Extracted DNA was

Fig. 1 Map of Svalbard showing sample locations of feathers of glaucous gull (Larus hyperboreus), common eider (Somateria mollissima), and

barnacle goose (Branta leucopsis)
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amplified by PCR method using KOD-plus DNA poly-

merase (Toyobo Co. Ltd., Japan). The ITS region was

amplified using following primers: ITS1F (50-GTA ACA

AGG TTT CCG T) and ITS4 (5́-TCC TCC GCT TAT TGA

TAT GC). The amplified DNA was purified using a

Wizard� SV Gel and PCR Clean-Up System (Promega

KK, Tokyo, Japan). And finally, the purified DNA was

sequenced at Macrogen Japan (Tokyo, Japan).

The sequences of isolates (DDBJ AB916505 to

AB916517) were deposited in the DNA data bank and were

subjected to a NCBI BLAST search. Sequence alignment

of ITS region isolates, together with the homologous

sequences (retrieved from GenBank) of closely related

species, was performed using Clustal W option of MEGA

software version 6.05 (Tamura et al. 2013).

To calculate the sequence divergence, the matrix was

analysed with the neighbour-joining method (Saitou and

Nei 1987) using the Tamura–Nei model (Tamura and Nei

1993) and maximum parsimony method (Tamura et al.

2011). To represent the evolutionary history of the taxa, the

bootstrap consensus tree was inferred from 1000 replicates

(Felsenstein 1985). The pairwise alignment was performed

using EMBOSS Matcher—Pairwise Sequence Alignment

tool (http://www.ebi.ac.uk/Tools/psa/emboss_matcher/

nucleotide.html).

Screening for keratinase activity

Screening tests on agar plates, using keratin substrate

(HiMedia), were performed using the method described by

Wawrzkiewicz et al. (1991). The activity of fungus was

detected as a clear zone around the colony after incubation

of 10 days at a temperature of 4 and 15 �C. The diameter of

the clear zone was measured to quantify the enzyme

activity.

Biosafety classification

Classification of isolated feather fungi based on biosafety

level was done by comparing the species with the database

present on www.cbs.knaw.nl and using standard literature

(Hoog 1996).

Results

Out of 15 feathers of barnacle goose, 31 isolates were

purified from 10 feathers, while the remaining 5 showed no

fungal growth on the SDA plates. Likewise, 7 out of 15

feathers of common eider yielded 15 isolates, while the

remaining 8 did not give rise to fungal colonies on the

plate. Similarly, out of 15 glaucous gull feathers, only 4 of

the feathers gave rise to 5 isolates on the SDA plates, while

the remaining 11 feathers appeared to be sterile. The total

51 isolates obtained were then classified into 9 groups

representing six species of filamentous fungi and three

species of yeasts (Table 1). On the basis of ITS region

sequence data, the isolates of yeasts and filamentous fungi

belonged to six genera (Pyrenochaetopsis, Cladosporium,

Thelebolus, Aspergillus, Penicillium, and Venturia) in class

Ascomycota, two genera (Mrakia, Rhodotorula) in Basid-

iomycota, and one (Mucor) in Zygomycota. The seven

species of feather fungi (Pyrenochaetopsis pratorum,

Thelebolus microsporus, Aspergillus versicolor, Venturia

sp., Mrakia blollopis, Rhodotorula mucilaginosa, and

Mucor flavus) were isolated from barnacle goose, two

species (Cladosporium herbarum and Penicillium com-

mune) were isolated from common eider, and one species

Mucor flavus was isolated from glaucous gulls (Table 1).

The total sequence lengths after alignment, % sequence

similarities, number of positions with base changes, and the

NCBI sequence deposition numbers are given in Table 1.

The sequence analysis of the 18S rRNA domain of isolate

Pyrenochaetopsis sp. PG293 (AB916515) indicated their

closest relationship with species of Pyrenochaetopsis pra-

torum CBS 445.81 (JF740263), Cladosporium sp. PG246

(AB916505) resembled with Cladosporium herbarum CBS

399.80 (AJ244227). Thelebolus sp. PG278 (AB916508)

resembled Thelebolus microsporus BI 15-1-1 (GU004196).

The results for Aspergillus sp. PG277 (AB916513) indi-

cated that its closest relationship is with Aspergillus ver-

sicolor RF6 (GU232767). The sequence analysis results of

isolate Penicillium sp. PG291 (AB916511) resembled

those of Penicillium commune H09-122 (KC009831), and

Venturia sp. PG255 (AB916509) indicated their closest

relationship with species of Venturia polygoni-vivipari

CBS 114207 (EU035466) by 97.6 % gene similarity and is

a novel species yet to be established. Mrakia sp. PG265

(AB916506) resembled Mrakia blollopis CBS8909

(AY038828). Rhodotorula sp. PG294 (AB916512) results

indicated their closest relationship with Rhodotorula

mucilaginosa UOA/HCPF 10538 (HQ702343). Mucor sp.

PG272 (AB916507) resembled Mucor flavus CBS992.68

(JN206067). Phylogenetic trees of fungi of the present

study belonging to Ascomycota, Basidiomycota, and

Zygomycota are shown in Fig. 2a, b, c.

The feathers, incubated on the SDA medium at 4 and

15 �C for 3 weeks, were shown to be similar types of

isolates at both temperatures, but the size of the colony is

twofold smaller at 4 �C than at 15 �C. Most of isolates

were able to grow up to 25 �C, but only 3 isolates of

Penicillium and 2 Aspergillus isolates were able to grow at

30 �C. These results indicate that some bird feather fungi

are psychrotolerant in nature.

Results of keratinase screening revealed that out of 51

isolates, thirty were keratinase positive. The isolates of

Polar Biol

123

http://www.ebi.ac.uk/Tools/psa/emboss_matcher/nucleotide.html
http://www.ebi.ac.uk/Tools/psa/emboss_matcher/nucleotide.html
http://www.cbs.knaw.nl


Pyrenochaetopsis sp. PG293, Cladosporium sp. PG246,

Thelebolus sp. PG278, Penicillium sp. PG291, and Mrakia

sp. PG256 proved to have keratinase activity in general

(Table 1). However, the strains of genus Pyrenochaetopsis

and Thelebolus had showed a strong keratinase activity,

while strains of genus Mrakia had shown a very week

keratinase activity. Among the 8 isolates of genus Peni-

cillium, 5 have shown moderate activity, while 3 have

showed no activity.

All the feather fungal isolates were found to be biosafety

level BS-1.

Discussion

Due to oligotrophic condition, the colonization and diver-

sity of fungi are very poor in Arctic environment. There is

variation in pattern of distribution of fungal strains in the

three birds studied. Occurrence of yeast and filamentous

fungi on feathers is less frequent and is observed only on a

few samples of the studied birds (barnacle goose, common

eider, and glaucous gull) in the area of Kongsfjorden.

Likewise, low-frequency occurrence of the fungi has also

been observed in throat and cloaca of the little auk in

Table 1 Identification of fungal isolates (strains) by ITS region sequences, covering ITS1, ITS2, and 5.8S rRNA sequences similarity (%), and

keratinase activity

Number

of

isolates

Identification Sequence

deposition

no.

Total

sequence

length

No. of

base

changes

Bootstrap

support

%

18S rRNA gene sequences

similarity (%)

Host of

the

isolates

Keratinase

activity

6 Pyrenochaetopsis

sp. PG293

AB916515 532 0 100 Pyrenochaetopsis pratorum CBS

445.81 (JF740263) by 100 %

Barnacle

goose

S??

7 Cladosporium sp.

PG246

AB916505 557 0 100 Cladosporium herbarum CBS

399.80 (AJ244227) by 100 %

Common

eider

M?

5 Thelebolus sp.

PG278*

AB916508 566 4 100 Thelebolus microsporus CBS

109799 (AY957552) by

99.2 %

Barnacle

goose

S??

Thelebolus microsporus BI

15-1-1 (GU004196) by 100 %

7 Aspergillus sp.

PG277

AB916513 571 0 97 Aspergillus versicolor RF6

(GU232767) by 100 %

Barnacle

goose

-

8 Penicillium sp.

PG291

AB916511 583 0 88 Penicillium commune H09-122

(KC009831) by 100 %

Common

eider

M?

Penicillium sp.

PG290

AB916514 592 0 70 Penicillium commune H09-122

(KC009831) by 100 %

Common

eider

-

4 Venturia sp.

PG255

AB916509 553 13 60 Venturia polygoni-vivipari CBS

114207 (EU035466) by

97.6 %

Barnacle

goose

-

5 Mrakia sp.

PG256*

AB916516 613 2 53 Mrakia blollopis CBS8921T

(AY038826) by 99.7 %

Barnacle

goose

W

Mrakia sp.

PG274*

AB916517 613 4 29 Mrakia blollopis CBS8910

(AY038827) by 99.4 %

Barnacle

goose

W

Mrakia sp.

PG265*

AB916506 620 0 100 Mrakia blollopis CBS8909

(AY038828) by 100 %

Barnacle

goose

W

4 Rhodotorula sp.

PG294*

AB916512 623 1 85 Rhodotorula mucilagin CBS

316T (AF444541) by 99.7 %,

Barnacle

goose

-

Rhodotorula mucilagin UOA/

HCPF 10538 (HQ702343) by

99.8 %,

5 Mucor sp. PG272 AB916507 616 5 84 Mucor flavus CBS 992.68

(JN206067) by 99.2 %

Glaucous

gull

-

Mucor sp. PG268 AB916510 608 7 100 Mucor flavus CBS 992.68

(JN206067) by 98.8 %

Barnacle

goose

-

* Represents ‘yeast’, keratinase activity was measured by observing the size of halozones: S?? represents strong positive, M? represents

moderate positive, W represents week positive, and - represents no activity/negative. [Halozone size (1 mm–1.5 cm) = ?, (1.6–2 cm &

above) = ??, (lesser than 1 mm) = w]
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region of Svalbard. Furthermore, the prevalence of the

yeast in little auk was reported to be very low (Dynowska

et al. 2013). Incidence of yeast has also been reported in

other seabirds (Kutty and Philip 2008). Thelebolus sp. has

also been reported in natural association with feathers and

sculls of skuas, petrels, and other birds (Singh et al. 2014;

Tsuji et al. 2013a). De Hoog et al. (2005) suggested a

distribution of this fungal strain through bird vectors, in

various habitats of Antarctica.

Fungi Cladosporium, Penicillium, and Aspergillus were

found during the current study on the feathers of Kongs-

fjorden, and this has also been reported to be present in the

Arctic soils (Holding 1981; Bergero et al. 1999; Kurek

et al. 2007; Singh et al. 2012). Most of the feather fungi

Fig. 2 a Phylogenetic tree of

Ascomycetous fungal strains

(isolates) with closely related

species based on ITS region

sequences analyses. The

accession numbers of strains are

shown in parentheses. The tree

was constructed with

neighbour-joined method. The

significance of each branch is

indicated by a bootstrap value.

The scale bar is estimated

substitutions per nucleotide

position. b Phylogenetic tree of

Basidiomycetous fungi from

bird feathers. The accession

numbers of strains are shown in

parentheses. Tree was

constructed with neighbour-

joined method. c Phylogenetic

tree of Zygomycetous fungi

from bird feathers. The

accession numbers of strains are

shown in parentheses. Tree was

constructed with neighbour-

joined method
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isolated were capable of growing between 4 and 25 �C, and

a few up to 30 �C, indicating that some of the bird feather

fungi are psychrotolerant in nature. Since the birds are

migratory in nature, feather colonizing fungi may have

survived in a range of temperatures at different geograph-

ical locations inhabited by the birds (breeding place to

wintering places). This psychrotolerant nature of fungi has

also been reported in Arctic soil by Bergero et al. (1999),

Kytöviita (2005), and Singh et al. (2012). The physical

adaptations that help the fungi overcome low temperature

and water stress include formation of chlamydospores and

mycelial thickening (Robinson 2001). Similar adaptive

features have also been observed in the present study in

Svalbard.

The fungal species recorded in current study is different

from the species reported present in internal organs (throat

and cloaca of little auk). Colonization of fungi in birds

depends on many factors such as feeding habit, nature of

habitat (feather, throat, and cloaca) and temperature dif-

ference on the surface (feathers), and the internal organs

(throat and cloaca). The current study in healthy birds

shows a low incidence of fungi on feathers when compared

to other non-polar birds. Moreover, low frequency of

occurrence of yeasts on Arctic bird with minor impact on

health has also been reported (Dynowska et al. 2013) and

Dynowska and Kisicka (2005a, b) taking into consideration

that the birds are random carriers of the fungi. The species

composition of fungi examined during the current study

belongs to nine genera (Table 1). From the current study,

nine species of fungi would be a good indicator of fungal

load on feathers. Likewise, Dynowska et al. (2013) also

reported 12 species of yeast belonging to eight genera in

auk birds. It has been assumed that the reported yeasts from

birds are likely to be present in the Arctic habitat

(Dynowska et al. 2013).

The occurrence of fungi in feathers of birds could arise

due to the possibility of change in nutritional mode

allowing them to hydrolysed keratin for their nutrition.

Cooke and Whipps (1993) have reported on the nutritional

alternative imposed on a fungus by its environment and the

narrowing of specialism within a single mode. Keratins are

insoluble fibrous proteins, and in nature, there exist as a-

keratins and b-keratins (Lehninger 1984). The a-keratins is

an insoluble fibrous protein, due to tight packing of their

polypeptide chains in a-helix structure and their linkages

by disulphide bridges, and hence rendering them poorly

biodegradable (Filipello Marchisio 2000). During the cur-

rent study, the isolates of Cladosporium, Penicillium, and

Aspergillus from feathers were also examined for kerati-

nase activity. This activity is moderately spread among

feather fungi. Thus, it can be concluded that keratinase

activity is widespread among bird feather fungi and it does

not follow that all isolates of the same species will

represent similar activity. Keratinolytic fungi such as

Cladosporium, Penicillium, and Aspergillus have also been

reported from areas other than polar region (Friedrich et al.

1999). Fungi are able to degrade the keratinic substrates in

nature mainly by a biochemical process (keratinases) and

morphological structures (hyphae) (Takiuchi et al. 1984;

Yu et al. 1969; Malviya et al. 1992; Filipello Marchisio

2000). Therefore, in natural environments, keratinolytic

fungi are involved in recycling carbon, nitrogen, and sul-

phur (Filipello Marchisio 2000). The ecological role of

fungi in decomposing complex keratin polymer is impor-

tant for bioconversion and the nutrient cycle (Friedrich

et al. 1999; Peay et al. 2008).

The role of migratory birds entering the Svalbard region

for breeding purposes acts as a vector for colonization of

fungi in new habitats (glacier) in the Arctic region. Mrakia

sp. and Rhodotorula mucilaginosa have been recorded

from Svalbard glaciers (Singh and Singh 2012; Singh et al.

2013), and the occurrence of these two species of yeast on

glaciers suggests a possible transmittance of fungi by birds.

Mrakia blollopis (Thomas-Hall et al. 2010) is a bipolar

species and has the unique ability of fermentating various

sugars at a low-temperature condition (Tsuji et al. 2013b).

Dynowska and Kisicka (2005a, b) opined that the fungi

proliferating in marine and terrestrial habitats may pas-

sively colonize the avian host through various ways (during

nesting incubation, chick rearing, and resting or foraging in

water), but the birds need to spend a considerable amount

of time in the environment to allow fungal colonization and

acclimatization (Dynowska et al. 2013). Over the period of

time, these fungi may acclimatize and become harmful to

the birds.

To understand the potential hazard faced by scientists

(e.g. ornithologists), laboratory personnel, and the envi-

ronment, the fungal species were classified in accordance

with their biosafety levels (Hoog 1996; www.cbs.knaw.nl).

Bird feather fungi recorded in the current study belong to

biosafety level BS-1, which is suitable for handling and has

minimal potential hazard to laboratory personnel and the

environment. Dynowska et al. (2013) reported potentially

pathogenic yeasts belonging to BSL-1 and BSL-2 category

which were isolated from throat and cloaca of Svalbard

birds (little auk).

The prevalence and distribution of keratinolytic fungi

largely depend on the amount of keratinic material present in

the environment (Filipello Marchisio 1986; Ulfig and

Ulfig 1990; Filipello Marchisio et al. 1991). The ecological

conditions such as pH, temperature, or altitude reported to

be less important because these fungi show a wide tolerance

towards them (Böhme and Ziegler 1969; Piontelli and

Caretta 1974; McAleer 1980; Ogbonna and Pugh 1987).

Pugh and Evans (1970) suggested that feather fats play a

large part in determining the occurrence of keratinophilic
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fungi in birds. The colonization of fungus on feathers in the

Arctic may possibly be due to their preference for superficial

feather fats. To arrive at such a conclusion, the composition

of feather fatty acids needs to be examined. Furthermore,

detailed studies on feather fungi in different areas of Arctic

may provide an opportunity to learn the details of feather

fungal flora and health condition of the birds. Similar such

studies will help to establish precautionary measures when

scientists handle birds for research purposes.
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