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Abstract

Here we describe the excretion pattern of corticosterone metabolites collected from drop-

pings in barnacle goslings (Branta leucopsis) raised under 24 hours of continuous natural

light in the Arctic. In lower latitudes, circulating corticosterone peaks around waking and

shows a nadir between midnight and 4:00, whereas the peak and nadir are time-delayed

slightly when measuring corticosterone metabolites from droppings. Photoperiod, along

with other environmental factors, helps to entrain an animal’s endogenous rhythm to that of

the natural world. North of the Arctic Circle, photoperiod may not be a reliable cue as light is

continuously absent during the winter and continuously present during the summer. Here,

for the first time, we used droppings to describe a 24-hour excretion pattern of corticoste-

rone metabolites (CORTm). By applying circular statistics for dependent data, we found a

diel rhythmic pattern even under continuous natural light. We discuss potential alternative

‘Zeitgeber’ that may function even in the polar regions, focusing on melatonin. We propose

a line of research to measure melatonin non-invasively from droppings. We also provide a

validation of the adopted enzyme immunoassay (EIA) that was originally developed for grey-

lag geese.

Introduction

The 24-hour rotation of the Earth subjects most living organisms to predictable daily rhythms

of light intensity and temperature [1]. Endogenous biological clocks coordinate and phase bio-

chemical, physiological and behavioural processes, which occur rhythmically and are restricted

to specific times of the day or season [1, 2].

From an evolutionary perspective, the molecular basis of circadian clocks and clock func-

tion is highly conserved throughout the vertebrates. Circadian clocks are generally induced by

transcriptional-translational feedback loops through rhythmic expression of clock gene
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products, which, in turn, switch on other clock genes in approximately 24-hour cycles. Syn-

chronization of endogenous circadian network systems is acquired through one or several

endogenous ‘Master’ clocks, which then coordinate more peripheral clocks. In birds, several

dissociated but interacting ‘Master’ clocks are located in the retina, the pineal organ, and

suprachiasmatic nuclei (SCN, [1]). Circadian clocks deviate slightly from a 24-hour rhythm,

and therefore must be entrained by external stimuli, so-called ‘Zeitgeber’, to ensure synchroni-

zation with real environmental time. Photoperiod provides the most important Zeitgeber in

many species [3].

The physiological basis by which animals assess environmental day length is governed by

the rhythmic excretion of hormones [1, 3]. Although hormone excretion, in part, has a genetic

basis, rhythmicity is frequently maintained with photoperiod as a Zeitgeber. Melatonin, a hor-

mone secreted primarily by the pineal gland and responsible for modulating sleep patterns, is

a crucial product of circadian master clocks. It provides the hormonal signal transducing day

length for peripheral clocks and daily physiological processes [1, 3]. Generally, melatonin is

secreted in a diel pattern, with an extended peak occurring at night, and basal secretion during

the day. The duration of the nightly pineal melatonin secretion is inversely related to day

length and its secretion drives enduring changes in many physiological systems, including the

hypothalamic-pituitary-adrenal stress axis (HPA, [3]), one of the two central stress response

systems in vertebrates. HPA activation ultimately results in the release of glucocorticoids

(GCs, e.g. cortisol in mammals, corticosterone in birds).

GCs are a group of adrenal cortical steroids that are, for example, involved in fat metabo-

lism [4], frequently in carbohydrate metabolism (but see [5, 6]), suppression of immune func-

tion and stress responses [2]. They are well known for their robust rhythmicity in circulating

levels [7–10] as well as for their involvement in coordinating peripheral clocks [11]. Both sea-

sonal (e.g. [12–15]) and diel variation ([16, 17], but see [15]) of GCs exists, with daily peaks

occurring just before or right around waking, whereas a nadir occurs around midnight to 4:00

[2, 18] in latitudes with year-round day-night cycles.

While at lower latitudes photoperiod provides a reliable cue for changes in hormone levels,

it becomes less dependable towards the equator, where daylength remains more or less con-

stant over the course of the year. Above the Arctic and below the Antarctic circle (66˚N and S),

where natural light is completely absent in winter but continuously present during the sum-

mer, photoperiod also may provide an undependable signal [9] and potentially challenge the

accurate function of diel rhythms [19]. However, despite the lack of photoperiodicity, other

potential ‘Zeitgeber’, such as diurnal changes in light intensity, polarization patterns, solar azi-

muth, UV radiation, changes in the spectral composition of light or ambient temperature are

present ([19–22], see [1, 23] for recent reviews).

Studies on circadian rhythmicity in polar regions have focussed on both behavioural pat-

terns and physiological parameters that are controlled by circadian clocks (see [1, 23] for

detailed reviews). Regarding behavioural activity patterns, there is large variation in activity

patterns of Arctic breeding vertebrates, with some species displaying either (i) entrained

24-hour activity cycles, (ii) arrhythmic or (iii) completely free-running cycles in the Arctic

summer [24]. In herbivores, for example, being continuously active is a common phenome-

non, even at low latitudes (see [23] for a recent review). Rhythmicity, however, is plastic and

may change seasonally, driven by annual changes of day length [24–26]. Svalbard rock ptarmi-

gan (Lagopus muta hyperborea), the only permanent resident avian species on Svalbard, for

example, show ultradian activity patterns and feeding occurs periodically during polar sum-

mer and winter days, whereas during spring and fall, activity patterns are diurnal and feeding

occurs mainly during daylight hours [25]. Similarly, phytophagous barnacle geese (Branta leu-
copsis) breeding on Svalbard also maintain an ultradian cyclic activity pattern of approximately
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1.5 hours of feeding, followed by a half hour rest in early July, whereas in August a midnight

sleeping interval of four hours is interspersed (M. J. J. E. Loonen, pers. obs.). These findings

support ideas by Bloch et al. [23], who suggested that ultradian activity patterns in polar

regions are linked with feeding behaviour and digestive processes, particularly in herbivores.

With respect to physiological parameters in polar regions, studies have focussed mainly on

rhythmicity of hormones. Whereas under artificial constant light pineal function is hampered

and results in a suppression of melatonin excretion, several Arctic and Antarctic species, such

as willow warblers (Phylloscopus trochilus), Lapland longspurs (Calcarius lapponicus) or Adélie

penguins (Pygoscelis adeliae) maintain clear diel melatonin rhythmicity during polar summer

days [19, 21, 22, 27, 28]. Other studies, however, found no such pattern (emperor penguin

(Aptenodytes forsteri), [29], Svalbard ptarmigan, [30]). Along the same lines, there are multiple

studies that have shown that several species of migratory birds still modulate circulating levels

of corticosterone in response to a capture–stress protocol (e.g. [12, 13, 31]) even under 24

hours of continuous natural daylight, whereas in other species the daily rhythm components

of plasma corticosterone concentrations were absent (Adélie penguin, [9], common eider

(Somateria mollissima), [32]). In the latter study, the absence of a clear diel corticosterone pat-

tern in common eiders was linked to the influence of corticosterone on constant foraging

activity [32].

Only very few studies are available that specifically were aimed at determining baseline lev-

els of corticosterone over the course of a full day [9, 33, 34]. The detection of short peaks of

corticosterone metabolites entails a frequent sample collection [35], and as recently pointed

out by Goymann & Trappschuh [33], the best sampling protocol for describing diel patterns of

hormone metabolites from faeces would be to collect all droppings in specific sampling inter-

vals during a single 24-hour period. This, however, may cause disturbance for the animals [33]

and is time-consuming, particularly in a natural setting, as animals need to be followed con-

stantly for 24 hours. Therefore, most studies sampled only snapshots by either collecting drop-

pings at specific points in time over the course of 24-hours (e.g. [34, 36, 37]) or in certain

intervals over several days until a 24-hour circle was completed (e.g. 2 hours/ day, the next 2

hours on the following day, and so on; [33]). For prospective studies on stress coping abilities

in wild barnacle geese under a complete day of natural light it was essential to describe the

detailed excretion pattern of corticosterone metabolites. Collecting all droppings of specific

individuals, however, bears the cost of smaller sample size due to the high efforts involved, and

potentially causing long-lasting disturbance. The latter problem can be solved by using spe-

cies-appropriately human-raised animals that do not shy away from humans while displaying

natural behaviour [38]. Utilizing free-ranging barnacle goslings (Branta leucopsis) hand-raised

under natural light conditions gave us the unique opportunity to describe the diel excretion

pattern of corticosterone metabolites over the course of 24 hours of continuous natural day-

light. We predicted the absence of a robust diel rhythm of corticosterone excretion in herbivo-

rous barnacle geese due to their ultradian foraging activity during the Arctic summer.

Validation of an enzyme immunoassay for the measurement of faecal

glucocorticoid metabolites in barnacle geese

In many studies, circulating corticosterone levels are measured from plasma by drawing

blood. However, capture and the sampling procedure elicit a stress response, which results in

an increase of GCs within minutes (e.g. [12, 39, 40]) and may pose a problem when interested

in baseline levels of GCs. A suitable alternative to blood sampling is the non-invasive determi-

nation of GC metabolites from droppings [41, 42]. One advantage of measuring GCs from

droppings is that successive samples can readily be collected without having to be concerned
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about GC levels first having to return to baseline levels before the next sample provides a reli-

able measure. Additionally, GC metabolites from droppings provide a collective measure of

circulating hormone concentrations prior to defecation, whereas GCs determined from

plasma reflect circulating levels at exactly the point in time of collection ([40], for recent

reviews see [42, 43]).

The method of analysing hormone metabolites from droppings is well established [43]. As

hormone metabolites rather than the actual circulating hormone itself are determined in drop-

pings, the method always requires a validation of the potential enzyme immunoassay (EIA),

before it can be applied reliably to a given species [40, 44–47] as it may not detect relevant GCs

even in closely related species [48, 49]. Immunoassays react to metabolites from all age groups

if their nutritional strategies, i.e. the dietary preference, gastrointestinal anatomy, digestive

physiology, biochemical capabilities, and commensal microflora [50], are similar. Thus, once

validated, the same assay can be used for adults and juveniles [51–53]. Our second aim, there-

fore, was to establish the validity of one available EIA through a capture and restraint challenge

performed on a flock of captive barnacle geese. This assay has been applied successfully in a

variety of studies in greylag geese (Anser anser) [54–57].

Materials and methods

Ethical statement

The study employed hand-raised goslings and complied with all current Norwegian laws and

regulations concerning work with wildlife (FOTS: 5468 of the Norwegian Animal Research

Authority to M. J. J. E. Loonen). Sample collection in captive geese was performed under DEC

License 6778 (to I. B. R. Scheiber, Groningen Institute of Evolutionary Life Sciences, Gro-

ningen, The Netherlands). No other manipulations of the geese, which would have required

additional licenses, were performed.

Biological validation of the corticosterone enzyme immunoassay

Study population and sample collection. Data collection for the biological validation was

performed in the goose pens (length x width: 68 m x 60 m) of the animal care facility at the

University of Groningen (53˚14’N, 6˚32’E) by M. E. de Jong and I. B. R. Scheiber. Details of

the facilities are described elsewhere [57]. At the time of data collection, i.e. March 17th and

18th 2015, the captive mixed species flock consisted of 26 adult greylag and 29 adult barnacle

geese, which could all be identified individually by a unique combination of coloured leg

bands. For the validation we collected repeated droppings from 24 barnacle geese (13 males

and 11 females).

On both days, data collection started well after the early morning corticosterone peak [58]

under similar weather conditions [54]. Temperatures at the start and end of the collection days

were: 8˚C at 08:45 and 15˚C at 16:00 on March 17th, and 9˚C at 08:45 and 13˚C at 16:25 on

March 18th, respectively.

The data collection was split into a control day and a challenge day. On the control day

(March 17th), geese were fed without any disturbance by spreading their regular amount of

food over the ground in the goose pen, as is done on a daily basis year round. From 09:00 to

15:30 we collected all droppings (n = 78 samples) whenever we saw a goose defecate and the

sample could be assigned to an individual.

High social density [55] and confinement [59] are considered serious stressors for geese.

We therefore opted for a chase and subsequent confinement of the geese in a small area as the

stressor for our validation experiment. On the challenge day (March 18th), we first chased

geese into a permanently set up funnel trap (length x width: 6 m x 2.5 m) at 08:45 and then
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kept them confined for 30 min. Before they were released one by one, their feathers were

checked for growth, and if necessary clipped to maintain flightlessness. Meanwhile, the same

amount of food was spread in the pen as on the control day. On the challenge day, data were

collected after the release of all geese, i.e. from 09:45 to 16:00. Again we collected all droppings

that we could assign to individual geese (n = 72 samples). For most of the sampled geese

(ntotal = 20; 11 males and 9 females) we were able to collect droppings on both days (S1 Table).

As goose droppings consist of an inseparable mixture of uric acid and faecal matter, we col-

lected and analysed both [57, 60]. Dropping samples were frozen at -20˚C within 1 hour after

collection, as freezing maintains accurate hormone metabolite levels for extended periods of

time [61]. Samples were shipped frozen to the Department of Behavioural Biology at the Uni-

versity of Vienna (Vienna, Austria) for analysis.

Extraction of immunoreactive corticosterone metabolites and determination of hor-

mone metabolite levels. Defrosted samples were weighed in at 0.5 g of wet faeces, as either

of the two commonly used extraction methods (wet feces/methanol or dried feces/ethanol)

were proposed to give similar results [45, 60]. We crushed and homogenised samples and sus-

pended 0.5 g of each sample in 4.5 ml of 60% methanol for extraction. Extracting faeces with a

lower proof percentage of alcohol, i.e. 60% rather than 80% proof, is recommended for birds

from which faeces and urine are excreted together [45, 60]. Samples were vortexed at 1,500

rpm for 30 min, and centrifuged (2,796 g) for 15 min. After that the supernatant was trans-

ferred to a new tube and diluted (100 μl of the supernatant 1:5) and used for further analyses.

After extraction, samples were analysed using enzyme immunoassays (EIA) with a group-

specific antibody recognizing 5β,3α,11β-diol glucocorticoid metabolites developed for greylag

geese [41] following the protocol by Palme & Möstl [62]. Details of the procedure and cross-

reactivities of this assay are published elsewhere [54]. The standard curve ranged from 2 to 500

pg/well and the 50% intercept was about 30pg [54]. For the measurement with EIA, the super-

natant was transferred to a TRIS assay buffer and the pH adjusted to 7.5 following [62]. All

analyses were run in duplicates; the confidence criterion for the samples was set at a coefficient

of variance (CV) of�15% for duplicates. The CV for sample duplicates was calculated as the

percentage of the standard deviation of the duplicates divided by the mean of the duplicates.

This serves as a control of the sample and analysis quality, as we would have re-analysed or

excluded samples of CVs > 15 from further analyses. Neither controls nor any samples fell

beyond the range of the standards. Concentration limits ranged from 6.22 to 579.16 ng

CORTm/g droppings on the control day and 4.46 to 391.63 ng CORTm/g droppings on the

challenge day, respectively. Intra- and inter-assay coefficients of variation (CV) were deter-

mined from homogenized pool samples and were 2.2 (<15%) and 1.0% (<25%), respectively.

Determination of diel excretion patterns of corticosterone metabolites

under 24 hours of natural light

Study population and sample collection. This study was performed in Ny-Ålesund,

which is located at the northern side of Brøgger Peninsula at the southern shore of Kongsfjor-

den, Svalbard (78˚55’N, 11˚56’E). Here, 24 hours of daylight last from April 18th to August

24th. To determine the diel pattern of corticosterone metabolites, we collected data from five

33-day old human-raised goslings. Goslings were collected during peak hatching time from

nests of a banded breeding population (see e.g. [63, 64] for details) and were immediately

marked with a small permanent numbered tag in the web of their feet. One human foster par-

ent (M. E. de Jong) provided care for the goslings. Data collection took place from 22:00 on

30th July to 21:59 on 31st July 2013. To be able to collect all droppings from the five individuals

(sex and identification band: ♂IA, ♀IC, ♀II, ♂IJ, ♂IX) over 24 hours, samples were collected
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continuously by changing teams of two, either from above netted, predator-safe cages (length

x width x height: 2 x 2 x 1 m) placed on the tundra close to the research station or by following

the goslings over the tundra. Samples were frozen within 1 hour after collection at -20˚C and

ultimately were shipped to the University of Vienna, Department for Behavioural Biology, for

analysis. Samples were processed in the same way as described under 2.1.2. In total, we col-

lected 571 dropping samples over the course of 24 hours (IA: 129 samples, IC: 92 samples, II:

101 samples, IJ: 109 samples, IX: 140 samples, S2 Table).

Statistical analyses

Biological validation of the corticosterone enzyme immunoassay. Data sets were ana-

lysed by using SigmaPlot 11.0 (Systat Software, San Jose, CA). We tested for normality of the

data distribution with Shapiro–Wilk tests (SW) and applied appropriate parametric or non-

parametric tests whenever applicable.

In order to validate the corticosterone enzyme immunoassay, we split our six-hour sam-

pling period into two three hour periods, based on the maximum gut passage time of barnacle

geese. Period 1 (‘Challenge Period’), which covered all droppings that resulted from confine-

ment on the challenge day, lasted from 10:00 to 12:59, whereas Period 2 (‘Recovery Period’),
in which CORTm values should have returned to baseline after the challenge, lasted from

13:00 to 15:59. On both days, we collected a similar number of droppings per individual, i.e.
3.71 ± 1.98 (mean ± SD, range 1–9) samples per individual on the control day, and 3.13 ± 1.55

(mean ± SD, range 1–7) on the challenge day. As mean values of immunoreactive corticoste-

rone metabolites (Tab. 1) did not differ between males and females either on the control

(mean ± SD: males 67.3 ± 30.20, females 69.83 ± 35.86) or challenge day (mean ± SD: males:

86.94 ± 50.36, females 72.92 ± 32.54), we pooled data for further analyses. To test, whether

the enzyme immunoassay was sensitive enough to pick up an increase in CORTm on the chal-

lenge relative to the control day, we calculated means for each individual during periods 1 and

2 on both days (n = 20, Table 1). Whereas data for period 2 were normally distributed (SW:

P = 0.861), data for period 1 were not (SW: P< 0.05). We opted to present results of Wilcoxon

Signed Rank Tests (WSR) in both cases for consistency.

Determination of diel excretion patterns of corticosterone metabolites under 24 hours

of natural light. Individual differences of defecation rates between the five hand-raised gos-

lings were analyzed with Kruskal-Wallis Analyses of Variance by Ranks (KWANOVAs). We

performed post-hoc tests applying Dunn’s method (Dunn) for multiple comparisons of ANO-

VAs by ranks with unequal samples sizes.

To detect a potential diurnal pattern of corticosterone metabolite excretion under 24 hours

of natural light, data were analysed using CircWave software V. 1.4 (Courtesy of R. Hut,

GELIFES, University of Groningen). CircWave uses harmonic linear regression to fit a sinu-

soidal curve to the data and to test its significance against a fitted horizontal line using an F-

test. We evaluated the raw data by fitting the following function f(t) = c + a � sin (2pt
24

) + b � cos

(2pt
24

) to each individual after transferring raw time into decimal time. From the results of Cir-

cWave we calculated the polar coordinates (r, θ) to display all five individuals at peak time on a

polar plot. Vector length r was calculated using the following equations: X = (sin (θ) Ind. 1

+ sin (θ) Ind. 2 + sin (θ) Ind. 3 + sin (θ) Ind. 4 + sin (θ) Ind. 5; Y = (cos (θ) Ind. 1 +(cos (θ)

Ind. 2 +(cos (θ) Ind. 3 +(cos (θ) Ind. 4 +(cos (θ) Ind. 5; r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2
p

. Finally, we tested for

non-uniformity of the calculated angles with the Rayleigh z test for data in a circular distribu-

tion by calculating: z = n � r2. Prior visual inspection of the calculated angles revealed no sign

of bimodality of the data around the 24 hour the circle and thus indicated that the application

of the Rayleigh z test was appropriate.
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All statistical results are given two-tailed with an α of 0.05.

Results

Biological validation of the corticosterone enzyme immunoassay

The excretion profiles of CORTm on the control and challenge day are presented in Fig 1.

Visual inspection revealed a difference in temporal excretion patterns on the control and chal-

lenge day. Relative to the control day, two pronounced peaks occurred on the challenge day

during the time intervals from 11:00–11:14 and 12:45–12:59, respectively. Although in birds,

renal and faecal matter are jointly excreted via the cloaca [50], the turn-over time of corticoste-

rone in uric acid is faster than from faecal matter, suggesting that the first peak (11:00–11:15)

reflects corticosterone metabolites from uric acid, and the second peak (12:30–12:45) might be

a sign of corticosterone metabolites from faecal excretion. This is consistent with data found in

other goose and sheldgoose species [56, 65, 66].

During the first three hours (Challenge Period), individual mean CORTm was higher on

the challenge day relative to the control day (WSR: Z = -2.166, P = 0.033, Table 1). This was

not the case in the three hours of the Recovery Period (WSR: Z = -0.362, P = 0.744, Table 1).

This indicates that the confinement proved to be a valid stressor for the geese and that the

Table 1. Details of barnacle geese used for the EIA validation.

Individual banding combination Sex x CORTm

Control

Period 1

10:00–12:59

x CORTm

Challenge Period 1

10:00–12:59

x CORTm

Control Period 2

13:00–15:59

x CORTm

Challenge Period 2

13:00–15:59

blue—green silver f 45.27 50.85 20.88 49.79

blue yellow—silver f 32.41 64.24 36.14 47.30

brown—silver yellow f 52.34 19.65 111.49 43.43

green green—orange f 49.82 98.20 14.36 61.45

orange brown—green f 100.91 213.67 92.26 94.66

red green—green f 94.07 66.68 151.80 48.98

red green—silver f 44.19 43.07 139.49 96.01

red silver—orange f 17.07 53.83 72.52 133.12

yellow—green blue f 44.71 54.64 77.42 32.64

blue blue—yellow m 72.40 71.18 27.69 65.21

red—blue silver m 75.25 107.21 32.92

red green—white m 15.41 63.86 23.71

red orange—yellow m 45.20 65.21 104.58

red silver—white m 30.59 44.42

red yellow—brown m 127.29 396.95 53.81 27.56

red yellow—green m 110.55 88.78

silver—red brown m 50.85 118.51 181.38

silver blue—orange m 64.24 52.58 42.28

yellow orange—brown m 19.65 17.38 21.63

yellow red—blue m 55.70 98.20 108.26 87.28

Banding combinations (right leg–left leg) and sex (f = female, m = male) of 20 captive barnacle geese housed in the animal care facility at the University of

Groningen, Netherlands), from which dropping samples were collected. Means per individual of immunoreactive corticosterone metabolites (ng CORTm/g

droppings) on control and challenge day split into periods 1 and 2 are given. Empty cells indicate that no dropping samples could be collected from that

individual in the given period.

https://doi.org/10.1371/journal.pone.0182861.t001
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assay was sensitive enough to pick up the corticosterone response. We, therefore, chose to ana-

lyse further dropping samples with this assay.

Determination of diel excretion patterns of corticosterone metabolites

under 24 hours of natural light

Mean defecation rate of the five individuals over the course of 24 hours was 4.75 droppings per

hour (range: 3.80–5.80 droppings). CORTm means per time interval differed between individ-

uals (KWANOVA: H = 25.945, df = 4, P< 0.001): Individual IC had higher baseline CORTm

values than individual IA (Dunn: Q = 2.901, P< 0.05), and individual IJ (Q = 4.881, P< 0.05),

respectively. Additionally, individual II had higher CORTm values than individual IJ (Q =

3.410, P< 0.05; all other pairwise multiple comparisons ns).

Each individual showed a highly significant rhythmic pattern (Fig 2, Table 2). These rhyth-

mic patterns were not random among individuals and showed highest levels of CORTm

around 22:00. This non-uniform distribution was statistically supported (Rayleigh test: Z 4.970,

P< 0.0001, n = 5, Fig 3) and indicates a rhythmic pattern of CORTm excretion under 24

hours of natural daylight in Arctic barnacle geese.

Discussion

In this study we present the first complete diel CORTm excretion pattern in barnacle goslings

living under 24 hours of continuous natural light. Contrary to our hypothesis, we found that

Fig 1. Excretion profiles of immunoreactive corticosterone metabolites in ng CORTm/g dropping on control (grey circles) and challenge

(black circles) day over time (GMT +1 hr.). Each point represents the mean (± S.E.M.) of all samples collected during a 15-min interval, e.g. the first

data point represents the mean of dropping samples collected between 10:45–10:59. Horizontal lines indicate the overall mean during control (line

style: dash–dot–dot) and challenge (line style: dash) day. Duration of confinement on the challenge day is shown by !.

https://doi.org/10.1371/journal.pone.0182861.g001
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Fig 2. Individual CORTm excretion patterns in ng CORTm/ g dropping of the five human-raised

barnacle goslings (♂IA,♀IC,♀II,♂IJ,♂IX) over 24 hours. Males are depicted in circles, females in

triangles. Model lines for each individual were calculated using the CircWave time function: f(t) = c + a � sin (2pt
24

)

+ b � cos (2pt
24

). Values c, a and b for all individuals are listed in Table 2.

https://doi.org/10.1371/journal.pone.0182861.g002

Table 2. Individual CircWave results.

Individual c a b p R2
unadj. tan (θ) peak time (h) r

IA 49.45 0.615 11.12 0.001 0.10 0.0553 0.2110 11.1370

IC 61.35 1.25 17.05 <0.001 0.15 0.0733 0.2795 17.0958

II 55.15 0.68 19.66 <0.001 0.22 0.0359 0.1321 19.6718

IJ 44.67 3.38 23.19 <0.001 0.35 0.1458 0.5528 23.4350

IX 51.25 4.67 13.77 <0.001 0.18 0.3391 1.2489 14.5404

Results of the CircWave analyses solving the following time function

f(t) = c + a � sin (2pt
24

) + b � cos (2pt
24

) per individual (IA, IC, II, IJ, IX). All individuals showed a highly significant diel pattern of CORTm excretion (p� 0.001). The

coefficient of determination (R2
unadjusted) is also presented. From the CircWave results, we calculated the tangent of the polar angle (a/b = tan (θ), peak time

(arc tangent in rad converted into decimal time in hours) and radius r (
p

of a2+b2) for each individual.

https://doi.org/10.1371/journal.pone.0182861.t002
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corticosterone metabolites from droppings showed both a clear peak and nadir that is sugges-

tive of a circadian rhythmic pattern. The maximum peak occurred at the start of sample col-

lection around 22:00, which corresponds to highest levels in plasma between 19:00–21:00.

Whereas most studies fail to find a rhythmic pattern of glucocorticoid excretion under con-

stant daylight [7, 9], we are aware of one study in humans, where a circadian pattern of cortisol

was maintained in a period of 24 hours of daylight (April/May) in male construction workers

on Svalbard [67]. Our unexpected finding raises the question of why geese showed a rhythmic-

ity in corticosterone excretion.

Activity patterns of geese, humans and predators

Daily variation in baseline glucocorticoid levels is believed to play a large role in regulating

metabolism of an animal by promoting feeding in order to regulate the deposition and storage

of energy [14, 68]. As do other species of geese, barnacle geese usually feed during the day

and rest at night in lower latitudes [69–71]. In our study area, where 24-hours of polar daylight

last from April 18th to August 24th, geese use the night hours for feeding too, but engage in

Fig 3. Polar locations of time of day (in hours) when CORTm peaks. This shows that the CORTm peak of all five

individuals occurs at approximately the same time. Radial values display the vector length r, the radial distance from the

origin, with larger values being indicative of a stronger diel pattern (for calculations see Table 2). Collection started at

22:00 (July 30th, 2013) and lasted until 21:59 (July, 31st, 2013).

https://doi.org/10.1371/journal.pone.0182861.g003
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prolonged resting bouts around midnight in August (M. J. J. E. Loonen, pers. obs.). One possi-

ble explanation, therefore, is that the peak in CORTm we observed at the end of July might

incite geese for an extended feeding bout before a prolonged resting period around midnight.

Furthermore, in the present study, human activities in Ny-Ålesund were considerably

reduced during night time in the summer months, which might increase predation risk

around town at night [72] due to higher encounter rates of polar foxes (Vulpes lagopus) and

polar bears (Ursus maritimus) in close vicinity to town during the quieter hours (M. E. de

Jong, M. J. J. E. Loonen, I. B. R. Scheiber, B. M. Weiß, per obs.). The human-raised goslings in

this study might have been more vigilant at night due to a general prevalence of predators in

the night hours, or because they were affected by increased vigilance from their wild conspecif-

ics, which, in turn, may have affected their CORTm excretion pattern.

Another feasible explanation is that the observed peak in CORTm in the late evening hours

is not indicative of diel rhythmicity but occurred in response to some unknown disturbance in

the hours prior to the start of our data collection. What argues against this idea is that CORTm

decreased gradually over six hours rather than suddenly, which would have been expected if

the peak had been caused by a disturbance. Furthermore, the peak value of CORTm at 22:00 is

well below the peak values collected in response to an acute stressor, i.e. the confinement chal-

lenge in the validation experiment. We can also exclude the possibility that the higher values

were caused by our presence, as we then would have expected the peak to occur anywhere

between 23:00 and 01:00.

Possible mechanisms involved in maintaining rhythmicity

Relative to geese at lower latitudes, which show a peak in corticosterone levels right around

waking, there seems to be a shift of the diel pattern in CORTm excretion in the barnacle gos-

lings in Svalbard. Although the light-dark cycle, per se, is absent in the Arctic during the

month of July, several circadian systems are fully expressed even under 24 hours of continuous

light, at least in migratory animals [19, 21, 22, 73]. This rhythmicity might be triggered, as has

been recently suggested, e.g. by changes in light intensity throughout the day [30], ambient

temperature [21] and/ or by melatonin as the essential product of circadian master clocks [19,

22]. The limited number of investigations on migratory polar birds that assessed melatonin

profiles under 24-hours of natural light found a diel rhythm of melatonin in plasma [19, 21,

22, 29]. Interestingly, the timing of the circulating melatonin profile in Lapland longspurs

(Calcarius lapponicus) [21] overlapped agreeably with that of our CORTm excretion patterns

in barnacle goslings. In resident Svalbard ptarmigan, however, a melatonin rhythmicity is not

expressed from May to July, whereas plasma melatonin levels vary throughout the day in all

other months of the year [30]. As our data collection took place at the very end of July, goslings

may have just started to entrain their corticosterone excretion pattern by responding to an

emerging melatonin rhythmicity triggered by subtle Zeitgebers, such as light intensity or ambi-

ent temperature. The pattern generally expected in geese, i.e. an early corticosterone morning

peak, might only emerge later on, once photoperiod as an environmental cue becomes de-

pendable again.

Unfortunately, nothing is known about melatonin expression in geese in the Arctic. A pro-

spective line for further investigations is the measurement of melatonin from droppings as, so

far, it has been measured exclusively from plasma. Melatonin, however, has already been suc-

cessfully measured non-invasively in fish from holding tank water as well as from mouse urine

and human saliva [74–76]. Quantifying both corticosterone and melatonin metabolites simul-

taneously from the same faecal samples at different time points over the polar summer (i.e. at

the onset, over the course of, and towards the end of the 24-hour light period) might shed light
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on the mechanisms involved in hormonal and behavioural rhythmicity as it relates to variables

such as light intensity, temperature, etc.

Effects of age

Very few studies have examined diel corticosterone rhythms in young birds [16, 77–79], which

showed that adult-like diel rhythmicity patterns may be observed shortly before sexual matu-

rity in domestic chickens (Gallus gallus domesticus, [78]) and shortly before fledging in western

screech-owls (Otus kenicottii, [77]), thin-billed prions (Pachyptila belcheri, [16]) and white-

crowned sparrows (Zonotrichia leucophrys nuttalli, [79]). The only study that explicitly exam-

ined when a fully functional avian corticosterone rhythm develops was performed in domestic

fowl in the laboratory under specified light conditions, i.e. 14L:10D [78]. Chicks developed the

first, phase-shifted rhythmicity between five and eleven weeks of age, with a corticosterone

increase during or just prior to the onset of darkness. The characteristic adult corticosterone

pattern was only apparent once chicks were approximately 17 weeks old, i.e. around sexual

maturation. This is similar to rats kept at 12L:12D, in which a rhythm first appeared at three

weeks of age, but an adult pattern was only obtained when pups were five weeks old [80].

Hence, the phase-shifted rhythm we observed in barnacle goslings could similarly have been a

first, pre-mature rhythmicity subject to change in older individuals.

Methodological assessment: Sampling regime, sample size

The main goal of this study was to describe the excretion pattern of basal CORTm over a com-

plete polar day in barnacle goslings. As the detection of short steroid metabolite peaks requires

frequent sampling [35, 56], we opted to collect all samples, rather than at specific times points,

a methodology that was suggested as the best option for describing a diel pattern [33]. This is a

logistically difficult collection scheme, and so far samples have never been collected in this

detailed manner over 24 hours outside the laboratory. Utilising human-raised goslings allowed

us to perform the fine-tuned data collection we were aiming for but limited the number of

individuals and the number of 24hr cycles that could be sampled without excessive manpower.

Accordingly, it might be argued that one day only might not be enough to describe the ob-

served pattern as being a diel rhythm, as it may have been caused by something unanticipated.

Although this is a valid claim it was a necessary trade-off between sampling accuracy and

length of the sampling period, and goslings showed no aberrant behaviour indicative of stress

to the familiar humans who performed the sample collection. As we are well aware that multi-

ple 24hr periods (possibly derived from several studies) would need to be measured in order to

assess if the observed patterns represent a true diel rhythm, we opted to refer to a diel pattern

throughout, rather than calling it a rhythm.

Conclusions

Juvenile barnacle goslings showed a circadian pattern in CORTm excretion under 24h of natu-

ral daylight, which deviated from the CORT patterns of barnacle geese at lower latitudes by

peaking in the evening rather than the morning hours. Possible explanations for the observed

pattern include the young age of the study subjects as well as human and predator activity pat-

terns in the research area, which should be addressed in future studies. Measuring CORTm

from faeces further proved to be a suitable alternative to blood sampling for evaluating cortico-

sterone profiles under continuous daylight. A promising avenue for future research comprises

also measuring melatonin from faeces to better understand the mechanisms of circadian

rhythms under continuous light regimes.
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